
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

A COMPARISON OF SOAP AND REST IMPLEMENTATIONS OF A SERVICE
BASED INTERACTION INDEPENDENCE MIDDLEWARE FRAMEWORK

Gavin Mulligan

Department of Computer Science, NVC
Virginia Tech

7054 Haycock Road
Falls Church, VA 22043, U.S.A.

Denis Gračanin

Department of Computer Science
Virginia Tech

2202 Kraft Drive, Room 1135
Blacksburg, VA 24060, U.S.A.

ABSTRACT

This paper describes the conceptual design of an interaction independence middleware framework and describes the role that
web services plays within it. We investigate two pervasive service-oriented architecture paradigms, SOAP and REST, in order
to gauge their potential effectiveness in meeting underlying back-end data transmission requirements; provide implementations
for the service-oriented architecture and data model; and, finally, critically evaluate both implementations with an emphasis
on their performance with regard to both efficiency and scalability.

1 INTRODUCTION

Practically every contemporary software product includes a graphical user interface (or GUI) to mediate interactions between
applications and interested users. Due to this, developers are commonly tasked with creating often-expansive GUIs which
also must provide support for any devices that potential users may make use of. For personal computer (PC) applications,
the supported devices are typically a mouse and keyboard which are operated in tandem (but not necessarily in parallel)
with one another. Things become more complex if a single application is ported across multiple platforms, where each has a
mutually-exclusive set of peripherals to support. This is a common occurrence on next-generation game consoles that do not
share controller device formats, button configurations, or even overarching interface metaphors (e.g. the role of the Guide
button was unique to Xbox 360 peripherals, but no others at that time).

When next-generation games are made, it is not uncommon for several distributions of a particular game to be developed
for a range of mainstream game consoles. The pervading approach to input device support, in this case, tends to lean towards
hard-coding support for platform-specific devices that correspond to the port being developed. In an abstract sense, these
ports each maintain individual dictionaries which map program actions to specific device inputs. This introduces a strong
coupling which requires each port’s implementation to be modified whenever new devices need to be supported or drivers
for currently-supported devices are updated. It also introduces code redundancy between ports, wherein each implementation
must define the set of program-specific actions that are mapped to device inputs. If these actions are ever modified or new
actions are required, then all ports must be edited and recompiled to maintain consistency. It is important to note that this
problem is not limited to just video games. As personal computers grow progressively more powerful, desktop applications
strain to provide useful services to users in the most efficient way possible. Furthermore, different users are comfortable
interacting with their computers in a variety of different ways.

We implemented and tested Portal, an interaction independence framework that adds a layer of abstraction between
arbitrary application code and the devices they support; allowing developers to deal in the realm of abstract program actions
instead of crafting code to handle a variety of concrete device inputs. This should eliminate the need for custom device-tailored
code for each user-wielded peripheral that an application must support and enable application device support to be managed via
configuration changes to the Portal middleware framework, rather than being hard-coded into an application. We investigated
two pervasive service-oriented architecture paradigms, SOAP and REST, in order to gauge their potential effectiveness in
meeting Portal’s underlying back-end data transmission requirements.

1423978-1-4244-5771-7/09/$26.00 ©2009 IEEE

Mulligan and Gračanin

2 Portal FRAMEWORK

The Portal framework acts as a middleware layer that serves as a bridge between abstract program actions and concrete device
inputs. From (Blair, Coulson, Robin, and Papathomas 1998), ‘the role of middleware is to present a unified programming
model to application writers and to mask out problems of heterogeneity and distribution’. In this case, Portal transparently
link actions to inputs, masking the complexity of having to support a wide variety of peripherals for applications which
utilize it. In addition to promoting loose coupling between application code and arbitrary device driver APIs, this approach
would also allow applications to present a unified interface with respect to what types of user input they support and reduce
the overall complexity and added redundancy typically involved with providing support for a wide variety of peripherals. To
accomplish this, Portal keeps track of a number of profiles which describe characteristics of client applications, user-wielded
devices, the interaction techniques (Bowman, Kruijff, LaViola, Jr., and Poupyrev 2004) that both support, and user profiles
that contain user-specified mappings between application profiles and device profiles.

Figure 1: Portal Framework Architecture / Profiles Diagram

The proposed Portal framework architecture is primarily segregated into two distinct halves: client and server. The
client-side portion deals mainly with client applications that utilize the framework in addition to embedded Portal plug-ins
which translate input from registered device drivers. The Portal server, on the other hand, contains the main data store that
maintains all registered interaction techniques, application, device, and user profiles (Figure 1). In addition, a service-oriented
architecture (SOA) mediates network communications between arbitrary Portal clients and the Portal server (or an equivalent,
indistinguishable Portal server mirror). Figure 2 displays a data flow diagram which demonstrates this architecture. As
indicated by the diagram, there are four major components which together compromise the Portal framework: the plug-in
manager, Portal controller, data transmission component, and the server-side data model.

Portal Data
Model

Server

Portal Server

D a
 t a

 T
 r a

 n s
 m

 i s
 s i

 o n

C
o m

 p o
 n e

 n t

Client

Portal
Controller

Server

Portal Client

Client

Supported
Applications

Plug-In
Manager

Device
Drivers

Service
Oriented

Architecture

Figure 2: Portal Framework Architecture / Data Flow Diagram

1424

Mulligan and Gračanin

2.1 Plug-In Manager Component

The Portal plug-in manager component is charged with ascertaining which Portal-supported devices a user decides to utilize for
a similarly-supported application, monitoring user-initiated device input, translating this input into corresponding interaction
techniques which the framework is configured to recognize, and relaying instances of these interaction techniques to the
Portal controller component. In essence, the plug-in manager serves as the main instrument of abstraction which separates
arbitrary device feedback from the applications that are interested in a user’s intent. Each device that has a profile in the
back-end data model must include a plug-in module that is registered with the client-side plug-in manager. These plug-ins
adhere to a predefined Portal device plug-in API (application programmer interface) that enables the manager to: dynamically
query the interaction capabilities of a particular device, query a device’s current operational status, and subscribe for any or
all interaction technique invocations related to a specific device.

2.2 Controller Component

Whereas the Portal plug-in manager component serves to bridge arbitrary device input with associated interaction techniques,
the controller component effectively links these interaction techniques to arbitrary applications that are interested in them.
The controller essentially acts as the central hub for relaying interaction technique invocation events between devices and
applications and, in addition, interacts with users and applications in order to configure mappings between device components
and applicable application actions that both correspond to the same interaction technique. Furthermore, the controller utilizes
the data transmission component to interact with the remote Portal data store so that it may create, read, update, or delete
user profiles related to specific device / application pairings.

2.3 Data Transmission Component

The data transmission component is primarily responsible for mediating communications between the client and server. This
component relays arbitrary commands to manipulate profile information stored in the server-side data model to and from a
potentially large set of clients based anywhere on the Internet. These commands generally follow the CRUD (Kilov 1990)
pattern of Creating, Reading, Updating, or Deleting profile information from the back-end data store. Due to this, we propose
that a service-oriented architecture (Sprott and Wilkes 2004) should be utilized for this data transmission component, such
that each service would represent a CRUD action being performed on application profiles, device profiles, user profiles,
or assorted Portal-specific information (such as user accounts, interaction technique definitions, etc). Like most Internet
applications, it is anticipated that there will be a huge disparity between the number of Portal clients and servers. Due to
this, our objectives for the design and implementation of the data transmission component and its underlying service-oriented
archicture was primarily geared towards both efficiency and scalability. The component must rapidly ferry action requests
between arbitrary clients and their corresponding servers in order to avoid hampering the performance of client applications.
Furthermore, the component should also be able to efficiently scale with a fluctuating number of clients per server.

2.4 Data Model Component

The data model component literally represents the model for a back-end data store that is located on an arbitrary Portal
server. The purpose for this store is simply to maintain all application profile, device profile, user profile, and user account
information while efficiently executing all incoming commands that may manipulate this information. The Portal data model
component performs these actions at the behest of the server-side data transmission component in response to web service
invocations by authorized Portal clients.

2.5 Data Flow

On the client-side, the Portal controller is responsible for invoking commands related to manipulating application, device, or
user profile information in a particular server’s data model via this component. An interface may be provided with abstract
methods defined for each individual service in the set and varying implementations of the data transmission component that
implement this interface may be used interchangeably for benchmarking purposes or as the Portal framework implementor
sees fit. Regardless, this interface allows the controller to call each service in the data transmission service set in typical
‘RPC model’ (Barkley 1993) fashion: where an interface method is invoked by a client and execution is summarily blocked
while a request is issued for that method to a remote entity, it is processed by the corresponding remote entity, and some

1425

Mulligan and Gračanin

result is returned to the client. On the server-side, a data access object (DAO) is implemented as part of the data model
component with, again, an interface method provided for each service in the Portal data transmission component service set.
In this fashion, hooks within the server-side portion of each implementation of the data transmission component’s underlying
service-oriented architecture interact with the DAO interface in order to interact with the data model. These interactions are
graphically depicted in Figure 3.

Figure 3: Portal Data Transmission Component / Data Flow

3 IMPLEMENTATIONS

3.1 SOAP Implementation

At a fundamental level, a SOAP-based architecture revolves around the transmission of XML-encoded messages over HTTP.
Specific SOAP service sets are defined in web service definition language (WSDL) files which are essentially XML files
adhering to a W3C-specified grammar. The WSDL file for the Portal service set references (or defines internally) a series of
XML schema types (or XSD types) that mirror the server-side data model. These types maps out the structure of parameters
that may be included in service requests / responses and, furthermore, may even be used to generate language-specific bindings
for various client and server platforms. Specifically in Portal’s case, these schema types define how application profiles,
device profiles, user profiles, and user accounts are constructed; so that they may be used as parameters in requests for the
creation, retrieval, modification, or deletion of such objects in the back-end data model. Additionally, types representing the
formats of service requests and responses are defined here.

All of these XSD types are referenced within the WSDL file to define the SOAP interface for a particular service set.
First, this file defines a collection of multi-part messages and maps them to individual XSD types. For the Portal SOAP
implementation, each message is composed of an instance of one type, which acts as the container for a specific service
request or response. Then, the WSDL file defines a so-called port which is later mapped to the overarching Portal SOAP
service set. The port itself is composed of multiple operations, each one representing a single service to be implemented in
the set. In turn, each operation maps previously-defined SOAP messages as its input and output types. Finally, the WSDL
file specifies a URL where servers that implement this particular service may be located by interested parties. The content of
this WSDL file represents a language- and platform-neutral method of remotely communicating the SOAP service interface.

Once the WSDL file for the SOAP implementation of the service-oriented architecture is written, it needs to be made
publicly available to all Portal clients capable of reaching a particular Portal server. This is done through the use of a
SOAP-enabled HTTP web server; and may be enabled in a variety of different ways. Regardless of how the HTTP server
to be used is configured, server-side code needs to be written that is responsible for handling incoming service requests and
formulating appropriate responses. However, the actual execution of these requests are accomplished by these server-side
hooks invoking appropriate methods within the data model’s DAO. By separating these responsibilities we permit the data
transmission component to focus solely on the expedient transportation of request / response messages while allowing the
data model component to sift through their contents and handle them accordingly.

3.2 REST Implementation

The REST implementation differs from its SOAP counterpart in very fundamental ways. While SOAP adheres very closely
to the RPC model, REST revolves around the concept of resources and focuses on using the inherent power of HTTP to
retrieve representations of these resources in varying states. In the REST style, every resource is signified by a unique URL
which may be operated on by a subset of the core set of HTTP commands: Get, Post, Put, and Delete.

1426

Mulligan and Gračanin

Our REST implementation of the data transmission component also implements the service set interface (that is utilized
by the controller). However, instead of a specialized SOAP client, any HTTP client library may be used to interact with
the Portal REST server. This is important to note, as there are only a handful of well-supported SOAP client libraries out
there, but practically every contemporary language comes equipped with a built-in HTTP library as it is a universal protocol
for communicating over the Internet. Furthermore, there is no need for service discovery and interpretation on the client’s
part, merely the IP address or network name for the Portal server it wishes to contact. Once the REST client is pointed at
a particular server, it sends an HTTP command to a specific URL in that server’s domain which relates the exact resource
which should be operated on.

4 RESULTS

Regardless of whether it follows a SOAP or REST approach, the data transmission component essentially exists as a
bundle of HTTP-based web services. As such, an important baseline to use when comparing the two implementations
is network-related performance metrics. Of primary interest is the end-to-end response time of individual web service
transactions (CA Wily Technology 2007), as any increase in this latency directly impacts the overall network quality of
service (QoS) (Cisco Systems 2008) for client applications that make use of this service. Additionally, coupling this average
latency information with the average packet size of each web service request between both implementations tells us how
much network bandwidth, on average, is utilized for each individual request. By examining the average round-trip latency
and packet sizes for invocations of Portal web services on a normalized data set, we can draw meaningful conclusions
concerning the fundamental differences between both service-oriented architecture implementations, as they are utilized in
the context of this framework, and use that to analyze the results of the other domain-focused data transmission component
tests.

Therefore, for this test, every service in each Portal service-oriented architecture implementation is invoked and both
the round-trip latency and overall packet size for each request / response pair are recorded. This is done five consecutive
times and the average latencies and packet sizes constitutes the final results. To record the delay for each web service request
invocation, a technique similar to the method of monitoring QoS performance in (Chatterjee and Webber 2003) was used,
wherein the current system time (in nanosecond resolution) is noted before the service request is made and then noted directly
after the response is returned. The difference of these two times then represents the overall latency incurred by the entire
transaction. Additionally, the request / response packet size are measured and used to trace the individual TCP streams for
each web service request / response HTTP packet and logs the resulting output. From these log files, the overall size of
each request / response pair (in Bytes) is determined.

Overall, the results indicate that, in almost every test conducted (for Add, Update, Get, and Remove), the REST-based
implementation generally incurred both a lower latency and average packet size than its SOAP counterpart (Figures 4, 5, 6,
and 7). However, it is not very surprising that one implementation would naturally perform better in both categories, as a
higher average packet size would almost certainly lead to a higher average round-trip latency. And it is clear that SOAP
messages, across the board, were larger than their REST equivalents.

The bulk of each request and response service message is generally the service-specific XML payload that is encapsulated
within them. This payload is an XML representation of a request or response object which is marshalled to a Java object on
the Portal server and subsequently processed. For example, for the ‘Add Application Profile’ service, this payload would be
an XML representation of a fully-instantiated (and validated) application profile Java object. Once the data model component
receives this object, it parses it and inserts this application profile into the back-end database.

Figure 4: Portal Service Benchmark Test / Application Profile Service Set: latency (left) and packet size (right)

1427

Mulligan and Gračanin

Figure 5: Portal Service Benchmark Test / Device Profile Service Set: latency (left) and packet size (right)

Figure 6: Portal Service Benchmark Test / User Profile Service Set: latency (left) and packet size (right)

Figure 7: Portal Service Benchmark Test / User Account Service Set: latency (left) and packet size (right)

Apart from this payload, REST request and response messages add zero overhead to the messages being transmitted
apart from the standard HTML headers which are used to route the packets through the network. SOAP, on the other
hand, encloses each message payload within an additional SOAP ‘envelope’ set of XML tags and adds a few SOAP-related
headers to the outbound HTTP packet. This, and this alone, contributes to the added bloated in SOAP packets. What’s
more, REST is able to take advantage of simplistic CRUD situations and execute them much more efficiently than the SOAP
implementation. Some examples of this are the ‘Remove’ services for application profiles, device profiles, and user accounts.
For these services, all that’s required to delete an item from the back-end data model is the item’s ID number. Therefore,
the REST implementation merely sends an HTTP DELETE command to the appropriate resource URL with the ID number
prepended. By doing so, it doesn’t have to include any internal XML payload to represent this ID number and, thus, cuts
down on its overall packet size. Conversely, the SOAP implementation is forced to include this payload. This explains why
the latency and packet size for the REST ‘Remove’ services are so much lower than their SOAP equivalents.

Thus, for the service benchmark test, it has been clearly established that the REST implementation of the Portal data
transmission component incurs less overall latency and requires less bandwidth than the SOAP-based counterpart.

1428

Mulligan and Gračanin

4.1 Synchronous Request Test

One of the main objectives of the controller component is to constantly query the plug-in manager for a global set of active
devices connected to that machine, so that it may use their device profile information in order to ascertain which applications
they are suitable for. Since we have not discussed any cacheing schemes for this framework, we are guaranteed that such
scanning by the controller entails multiple queries to a remote Portal server for applicable application, device, or even user
profiles every time it detects a new device. This test attempts to model an increasing series of synchronous profile requests
emanating from a single host to a remote Portal server in order to determine how each implementation fares under these
conditions. As before, the integral metric for this test is the average round-trip latency for each set of synchronous requests
- and it is measured using the same method employed in the service benchmark test.

Figure 8: Portal Synchronous Request Test: client latencies

The latency of the SOAP-based implementation always serves as the upper bound for its REST counterpart (Figure 8).
However, the disparity between the implementations is relatively miniscule until the ‘100 synchronous client requests’ test.
At this point, the average SOAP client request latency was almost double that of the REST client. This discrepancy is most
likely an artifact of the Axis2 (Apache Software Foundation 2008) library implementation powering the SOAP-based client
(in addition to the Portal web service server) or it is also possible that an abundance of ulterior network traffic was present
when this test was repeatedly run; thus, skewing the average results. Whatever the case, the REST client seemed able to
resiliently process numerous synchronous HTTP service requests while trending upwards in a strictly linear fashion. On the
other hand, the diagram clearly shows the SOAP client trending upwards exponentially as the tests progressed.

Clearly, the REST implementation remains the better option in this scenario. Even when the SOAP ‘100 synchronous
client requests’ is disregarded, the fact remains that its REST counterpart consistently had a lower average latency in addition
to a smaller overall packet size (as noted in the service benchmark test).

4.2 Application Complexity Test

Thus far, the application profiles inserted, updated, retrieved, and deleted from the server-side Portal data model for each
of the preceding tests have been rather simplistic in nature. It is anticipated that ‘real-world’ applications will generally be
orders-of-magnitude larger than the faux ‘Tetris’ and ‘VT Dungeon Crawler’ applications modeled in the Portal test suite. As
such, we feel it is important to model the application actions and contexts of a variety of popular real-world applications in
order to determine the overall impact of these potentially massive profiles and whether their performance greatly skews from
the application profiles we’ve been using in the preceding tests. We choose to examine application profiles, in particular,
because they will generally be larger than their device profile and user profile counterparts. Furthermore, user profiles are
essentially just mappings between device components and application actions, so the full application profiles will generally
be larger in size.Thus, for the purposes of this test, three application profile types were utilized: a small, medium, and large.

The small profile is the Tetris application we used in the service benchmark and synchronous request tests which contains
four application actions (rotate clockwise, rotate counter-clockwise, move down, move left/right) and one context. This profile
represents a fictitious, generic version of Tetris (The Tetris Company 2009), a two-dimensional puzzle game that involves the
manipulation of falling sequences of tetrominoes (Gardner 1988). The profile contains the base amount of required actions.

For the medium application profile, we implemented the application actions and contexts from Half-Life. This game
was the progenitor to contemporary first-person shooter (FPS) videogames and, it can be argued, served as the archetype

1429

Mulligan and Gračanin

for all FPS games released after it. Aside from certain game-specific variations, the control scheme (and subsequently, the
applications actions / contexts) for Half-Life demonstrate actions which are fairly universal within the FPS genre. These
actions allow users to navigate within a simulated three-dimensional environment (typically using a mouse and keyboard, in
tandem), interact with various items located within this environment, and manipulate the user’s arsenal of assorted weaponry
from a first-person perspective.

Finally, the large application profile represents application actions and contexts from the popular MMORPG (massively,
multiplayer, online role-playing game) World of Warcraft (Blizzard Entertainment, Inc. 2009). At this time, World of Warcraft
(WoW) is the most popular MMORPG in existence and is played, world-wide, by millions of people. It provides a greater
deal of actions to allow for user customization to sate its incredibly large (and diverse) base of users.

For each profile type (small, medium and large), a series of five ‘Get Application Profile’ service requests are sent for
each data transmission component implementation and their average latency and overall packet size for each request are
recorded. These metrics are captured in the same fashion as the service benchmark test.

Figure 9: Portal Application Complexity Test: latency (left) and packet size (right)

Interestingly enough, Figure 9 (left) shows the SOAP implementation has a slightly smaller recorded latency for the
smaller Tetris application profile retrieval request and a much higher latency for the larger World of Warcraft request.
Conversely, the REST implementation yielded similar latencies for all requests within 50 milliseconds of eachother. This is
especially surprising considering the packet sizes recorded in Figure 9 (right). In all cases, the packet sizes are ultimately
dominated by the XML payload they carry and not the encapsulating HTTP packet or architecture-related trappings (such
as the SOAP envelope, etc). Having said this, it clearly shows that there is only a small difference in the packet sizes for
the small, medium, and large application profiles. This leads to the conclusion that the vast increase in latency for the
medium and large application profile requests originate from the underlying SOAP library used in the SOAP implementation
of the data transmission component — Axis2. Again, the REST implementation proves to be the better choice. Despite
the large application profile being almost 40 times larger than the smaller profile, the REST data transmission component
implementation yielded a very slight, linear increase in latency in proportion to the underlying packet transaction sizes.
Conversely, the SOAP implementation’s latency rose exponentially in proportion to the packet transaction size.

4.3 Analysis of Test Results

The Axis2 SOAP framework was chosen, for a number of reasons, to serve as the SOAP implementation for the architecture
underpinning the Portal data transmission component. Chief among these reasons is the fact that, from the W3C-maintained
list of all past and present registered SOAP 1.2 implementations, the Apache Axis project is the only one that is still
actively developed, open-source with a non-restrictive license, and implemented in a slew of different programming languages
(including both Java and C/C++). Additionally, community feedback and various studies (Davis and Parashar 2002) indicate
that Axis2 is faster than its peers, in terms of overall SOAP message processing latency. As such, it was used to represent
the prototypical SOAP implementation in the series of tests.

When analyzing the results of the synchronous requests and application complexity tests, the latencies incurred by the
SOAP implementation of the data transmission component were effectively labeled as artifacts stemming from the underlying
Axis2 framework. If we take into account that the average latency disparity between the REST and SOAP data transmission
component implementations was disproportionate to their average message size disparity, then a logical conclusion to draw
is that the underlying Axis2 framework is to blame for the disproportionally high SOAP latency. Delving into the Axis2
documentation, they remark that a pipelined process exists for each outgoing SOAP message wherein ‘the sender creates
the SOAP message[,] Axis handlers perform any necessary actions on that message[, and] the transport sender sends the
message’ (Apache Software Foundation 2008). In other words, this framework is responsible for serializing the outgoing

1430

Mulligan and Gračanin

SOAP message into XML, passing the result through an unspecified series of handlers, and finally transmitting the resulting
XML message to a remote SOAP server via HTTP. This pipelined approach would seem to be a likely culprit for the noticeable
increase in the average round-trip latency when using the Axis2 framework. Compare this to the REST implementation,
wherein an outbound HTTP packet is created, a pertinent XML payload is attached for a given web service, and this packet
is then immediately transmitted to a REST-specific URL.

5 CONCLUSION

As a result of the tests, we can definitively state that the REST implementation of the data transmission component proved
to be more efficient in terms of both the network bandwidth utilized when transmitting service requests over the Internet
and the round-trip latency incurred during these requests. The web service set enabled by the data transmission component
strictly adheres to the CRUD pattern, wherein services allow for Creating, Reading, Updating, or Deleting profiles from the
server-side data repository. The REST implementation was a far better fit for this web service set model over the RPC-like
behaviour employed by the SOAP implementation and, overall, yielded much better results when the component was tested
under different domain-specific scenarios.

REFERENCES

Apache Software Foundation 2008. Apache Axis2/Java 1.4.1 user guide.
http://ws.apache.org/axis2/1_4_1/userguide.html.

Barkley, J. 1993. The RPC model. NIST Interagency Report NISTIR 5277. Available via
<http://hissa.nist.gov/rbac/5277/> [accessed July 15, 2009].

Blair, G. S., G. Coulson, P. Robin, and M. Papathomas. 1998. An architecture for next-generation middleware. In Proceedings
of the IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware’98),
15–18, London: Springer-Verlag.

Blizzard Entertainment, Inc. 2009. World of Warcraft. Available via <http://www.worldofwarcraft.com> [accessed
July 15, 2009].

Bowman, D. A., E. Kruijff, J. LaViola, Jr., and I. Poupyrev. 2001. 3D User Interfaces: Theory and Practice. Boston:
Addison-Wesley.

CA Wily Technology 2007. SOA and web services - the performance paradox. Available via
<http://ca.com/files/WhitePapers/cawily-soa-performance-paradox.pdf> [accessed July 15,
2009].

Chatterjee, S., and J. Webber. 2003. Developing enterprise web services. Upper Saddle River, NJ: Prentice Hall PTR
Cisco Systems 2008. Quality of service (QoS). Internetworking Technology Handbook. Available via

<http://www.cisco.com/en/US/docs/internetworking/technology/handbook/QoS.html> [ac-
cessed July 15, 2009].

Davis, D., and M. Parashar. 2002. Latency performance of SOAP implementations. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 407. Washington, DC: IEEE Computer Society.

Gardner, M. 1988. Hexaflexagons and other mathematical diversions: The first Scientific American book of puzzles and
games. Chicago: University of Chicago Press.

Kilov, H. 1990. From semantic to object-oriented data modeling. In Proceedings of the First International Conference on
Systems Integration, 385–393. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Sprott, D., and L. Wilkes. 2004. Understanding service-oriented architecture. The Architecture Journal 1 (1): 10–17.
The Tetris Company, 2009. Available via <http://www.tetris.com> [accessed July 15, 2009].

AUTHOR BIOGRAPHIES

GAVIN MULLIGAN is an M.S. student of Computer Science Department at Virginia Polytechnic Institute and State
University. His research focuses on the interaction interoperability, web services, and distributed systems. His email address
for these proceedings is <gmulliga@vt.edu>.

DENIS GRAČANIN is an Associate Professor of Computer Science at Virginia Polytechnic Institute and State University.
His research interests include virtual reality and distributed simulation. He is a member of AAAI, ACM, IEEE, SCS, and

1431

Mulligan and Gračanin

SIAM. His email address for these proceedings is <gracanin@vt.edu>.

1432

